hirax.net::Keywords::「座標」のブログ



2001-01-16[n年前へ]

バスト曲線その2 今日書いたメール。 

 あの方程式は
>液体の圧力は水平方向ではなく表面の法線の方向に働くので
このとおり、表面の法線方向の関係に直されていますし、それが「自由境界におけるLaplace の関係」そのものですよね。
>というのは液体の圧力は水平方向ではなく表面の法線の方向に働くので、
>ヤング率が大きくなる程半球に近付くはずです。

 単に液体の自由境界を計算するときと同じように解けば、あの文章の末尾に
>ちなみに「水風船バストモデル」は無重力下ではどのような
>形状をとるかと言えば、当然体積に対して表面積が最小となる「半球形状」になる。
と書いたように仰るとおり半球に近づくように一見思えます。
 ここで無重力下というのは、皮膚の張力が重力に較べて十分大きい、ということなわけで「ヤング率が大きくなる」のと同じなわけです。

 ところがところが、です。
「あの方程式を解くときの境界条件は胸板側の長さ・バストの体積を先に決めています。」
 また、「あの座標軸の下で方程式を解く」ために、あの方程式はY,B(Y)の一対一の対応を必要としています。それが、「バストが本当に垂れてしまうような状況は考えていなかったりするので」という前提ですね。

 この二つの境界条件・前提の下で、「ヤング率が大きくなる程半球に近付くはず」が本当に正しいかどうか、考えてみては如何でしょうか?
 この二つの条件を除外しようとすると、方程式を作って解くのがとたんにメンドーになります。
というわけで、一般化されたバスト方程式をぜひ作って解いてみて下さい。

2001-01-27[n年前へ]

オッパイ星人の力学 仏の手にも煩悩編 

時速60kmの風はおっぱいと同じ感触か?

 本サイトhirax.netは「実験サイト」というジャンルに分類されることが多いようである。何が実験で、何が実験でないのかは私にはよくわからないのだが、とにかく「実験サイト」と呼ばれるサイトは数多くある。そして、その数ある実験サイトの中でも、人間そして愛について日夜取り組んでいるサイトの一つが「性と愛研究所」である。

 その「性と愛研究所」を読んでいると興味深いことが書いてあった。テレビ番組の「めちゃめちゃイケてる!」の中で何でも「時速60キロの風圧はおっぱいの感触である」と言っていたらしい。そしてまた、「性と愛研究所」では「おっぱいの感触と風圧に関する考察」の中で、「時速60kmでは全然おっぱいの感触ではなくて、ちょうど時速100kmを境に急におっぱいの感触を感じます。」というメールを紹介しながら、

「時速100kmの風では、本物は触れないけどお手軽に疑似体験、名付けて『プリンに醤油でウニ』ではなくなってしまう。それでは、まるで『キャビアにフォアグラでトリュフの味』だ。青少年のために疑似おっぱいを探してあげる必要があるな。」
と結論づけている。

 この「時速60kmの風」現象は「できるかな?」的にとても興味深いと思われるので、今回じっくりと考えてみることにしてみた。そして、この結論に何らかのプラスαをしてみたいと思う。

 そう、前回「オッパイ星人の力学 第四回- バスト曲線方程式 編- (2001.01.13)」でオッパイの表面で働いている力について考えてみたのは、実は単に今回・そしてさらに次回の話のための準備だったのである。(さて、ちなみに今回は会話文体をメインに話が進む。「性と愛研究所」ではないが、この手の話は会話文体の方が書きやすいように思うし、私のバイブル「物理の散歩道」でも「困ったときの会話文体」と言われていたので挑戦してみた次第である。言うまでもないが、AもBも私が書いてはいるが、私自身ではない。)
 

A : 「東名高速で出勤途中に確認してみたんだが、やはり時速100kmあたりが妥当な感じだったな。」

B : 「何を根拠に妥当なのかがよくわからないが、確かに時速60kmでは手に何かが触っているという感触すらないな。それにしても、哀しい出勤の景色だぞ、それ。」
A : ほっとけ!だけど、少し考えてみると、このおっぱい(ニセモノ)の感触問題は結構面白く、技術的にもなかなかに深い話だと思うんだよ。」
B : 「はぁそうですか…、としか言いようがないな。」
A : まぁ、聞け。何しろこのおっぱい(ニセモノ)の感触問題には流体力学のエッセンスがぎっしりと詰まっているんだからな。」
B : 「そんな話は聞いたことはないが、とりあえず聞かせてもらおうか。」
A : 「このおっぱい(ニセモノ)の感触問題を解くためには、とりあえず車の窓から手を出したときの指の周りの空気流を計算すれば良いわけだ。」
B : 「ちょっと待て。何で指の周りなんだ。手のひらじゃなくて?」
A : 「簡単なことさ。試しにおっぱいを揉む仕草をしてみろよ。」
B : 「こ、こうか?あぁ?手のひらじゃなくて指で揉んでるっ!
A : 「そうだろ。何故かわからないが、おっぱいを揉む仕草=Mr.マリックが超魔術をかける時のような指使いらしいんだよ。」
B : 「うむ、確かにそのようだな。」
A : 「だから、時速60kmの風からおっぱいの感触を受けているのは指先だと考えるのが自然だろ。それなら、とりあえず下の図のような「指の間を抜けていく空気の流れ」を計算してみれば、おっぱい(ニセモノ)の感触問題が解けるわけだ。」
B : 「実写の手に二次元の計算結果を三次元的に合成するという凝った処理が、実にクダラナイことに使われている例だな…」
車の窓から手を出して、指の周りの空気流を計算しよう
  高速で走る車の窓から手を出して、その手の指の間を抜けていく空気の流れを計算しよう。

 鉛直方向の指の等方性を考えて、右の図に示すような指を輪切りにするような水平面のみを考える。

 こんな写真を撮るときに、自己嫌悪に陥りがちなのは何故だか知りたい今日この頃。

A : 「こういう「空気の流れ」ような流体の力学は、ニュートンのプリンキピアに始まり、オイラーとベルヌーイにより非圧縮・非粘性の理想流体の運動方程式とエネルギー保存則が導かれた。それがオイラーの運動方程式とベルヌーイの式だ。オイラーの運動方程式はちなみにこんな感じだ。」
 

オイラーの運動方程式

加速度 = 外力 + 圧力勾配力
 
v : 速度
s : vに沿ってとった座標
t : 時間
p : 圧力
K : 外力

A : 「基本的には「加速度 = 外力 + 圧力勾配力」という形だな。この非圧縮・非粘性の理想流体の場合はラプラシアンがゼロのポテンシャル流れと呼ばれる単純な流れになる。試しに、そんな場合をNast2Dを元にしたプログラムで計算してみた結果はこんな感じになる。ホントはこの計算自体は完全な理想流体ではないのだが、まぁ大体はこんな感じだ。」

B : 「おっ、あっという間に計算したな。」
A : 「まぁ、ポテンシャル流れならエクセルでもちょちょいと計算できるくらいだからな。ちなみに、これは窓から手を出してしばらくしてからの空気の流れだ。」
 
粘性が(ほとんど)ない時の指の周りの空気の流れ

A : 「で、どうだ?」

B : 「いや、どうだ、と言われても困るが、なんかキレイだな。だけどちょっと小さくて見にくいなぁ。」
A : 「そう言われれば確かにそうだ。じゃぁ拡大してみるか。」
 
粘性が(ほとんど)ない時の指の周りの空気の流れ (拡大図)
空気は右から左へ流れている。いや、指が右から左へ移動していると言った方が良いか?
B : 「で、この結果から何がわかるんだ?」
A : 「この図で空気は左から右へ流れているわけだが、左端の空気の速度と右端の空気の速度は、実は同じなんだ。」
B : 「そう言われても、よくわからないが?」
A : 「指を通り過ぎてく空気は、指をとおる前後で運動量がそのまま変わってないってことさ。つまり、空気は指を通り過ぎる時になんら抵抗を受けてないってことだ。」
B : 「えっ?おかしいじゃないか、それなら逆に言えば指も空気から何の抵抗を受けないってことか?
A : 「そういうことだ。これがダランベールのパラドックスだ。」
B : 「じゃぁ、何か?この指先に感じるまぎれもないおっぱいの感触はだとでもいうのか!? そんなのオレは認めないぞ!」
A : 「まぎれもない、っていうほどのものでもないし、ニセモノおっぱい自体は何か一種の幻のような気もするが、もちろん感触自体は幻であるハズはない。そもそも、空気をサラサラな理想流体として取り扱ったところが間違っているわけだ。そこで、登場するのがナヴィエとストークスだ。彼らはオイラーの運動方程式に粘性を導入した。全てはおっぱいの感触を説明するため、だ。」
B : 「それウソだろ。ナヴィエとストークスが聞いたら怒るぞ。」
非圧縮流体に対するナヴィエ・ストークスの方程式

加速度 = 外力 + 圧力勾配力 + 粘性力
 
v : 速度
t : 時間
p : 圧力
K : 外力
μ: 粘性係数

A : 「見ればすぐわかるだろうが、この非圧縮流体に対するナヴィエ・ストークスの方程式は、最後に粘性項が入っている以外はオイラーの運動方程式と全く同じだ。」

B : 「なるほど。こうしてみると意外に簡単な式だな。」
A : 「あぁ、オイラーの運動方程式に粘性項が入っただけだからな。そのせいで計算はちょっと複雑になるが、最近のパソコンならノープロブレムだ。というわけで、粘性を考慮して計算してみた結果が次の図だ。」
 
 
粘性を考慮した指の周りの空気の流れ
B : 「おっ、ちょっと様子が違うな。何か、ジェットエンジンみたいに尾を引いてるぞ。」
A : 「そうだろ。指の後ろのl様子がずいぶんと違うだろう。で、これを拡大してみたのが次の図だ。」
 
 
粘性を考慮した指の周りの空気の流れ (拡大図)
B : 「左端の空気の速度はもちろんさっきと同じだが、指の後ろでは空気が渦巻いているし、右端の空気の速度は全然違うな。」
A : 「もっとリアルに、窓の外に手を出したときの、指の周りの空気の動きを時間を追って計算してみた計算結果のアニメーションが次の図だ。指の周りに空気が渦巻いていく様子がよくわかるハズだ。」
 
車の窓から手を出して、指の周りの空気流を計算しよう
 窓の外に手を出したときの、指の周りの空気の動きを時間を追って計算してみたもの。指の周りに空気が渦巻いていく様子がよくわかる。

 メッシュを細かく切ったおかげで、計算結果は1GB弱。なんてこったい。

B : 「指が空気の中を走り抜いていく様子がよくわかるな。確かにこれなら、空気の抵抗を受けまくりだな。」
A : 「そうだ。空気は指から力を受けるし、逆に、指は空気からしっかりと力を受けるわけだ。」
B : 「なるほど、この計算結果は指先に感じるまぎれもないおっぱいの感触を説明しているわけだな。いい感じじゃないか。流体力学そして粘性項さまさまじゃないか!」
A : 「あぁ、それも全てナヴィエとストークスのおかげだ。」
B : 「おやっ?ちょっと待てよ!これでは、ただ現実を説明してみただけで、何の解決にもなってないぞ!時速60kmと時速100kmの風の感触の差を説明しているわけでもないし、青少年のためのもっと安全な擬似おっぱいを提供しているわけでもない!」
A : 「いや、それがそういうわけでもない。実はこの先があるんだ。このナヴィエ・ストークスの方程式の解はレイノルズ数という無次元数によって決定されるんだ。今回の場合で言うと、レイノルズ数は「指の直径x 車の速度 / 流体の運動粘性率」という形になる。そして、このレイノルズ数が大きくなるほど渦が延びていくんだ。」
B : 「なるほど、わかってきたぞ。つまりあれだな。時速60kmから時速100kmに速度を上げれば、それに応じてレイノルズ数が大きくなって、空気の渦もおおきくなるし、おっぱいの感触も確実なものになるわけだな。勉強になるな。」
A : 「う〜ん、実際には密度の違いの方が大きいんだが、ナヴィエ・ストークスの方程式の理解としてはそれでいいかもな。あと、単にレイノルズ数を大きくしたかったら指を太くする、っていうのでもいいわけだ。」
B : 「そう言われても指の太さはなかなか変えられないしなぁ。」
A : 「指サックとか色々手はあると思うが、もっといい方法がある。さっきの式を眺めてみれば流体の運動粘性率が小さくなれば、レイノルズ数は大きくなる。例えば、水の運動粘性率は空気のそれの十五分の一だ。」
B : 「ってことは、水の中だったら、レイノルズ数も大きいし、密度も大きいし、指先に抵抗を受けまくりってことだな。すると、水中で手を動かしてみれば、それは空気中の高速クルージングと同じってことになるな!」
A : 「そうさ、風呂の中で手をひとかきすれば良いだけの話さ。何もわざわざ時速100kmの車の窓から手を出す必要はないんだ。実際、風呂の中で確かめてみたけど、なかなかイイ感じだ!」
B : 「時速100kmで走る車の窓から手を出すのに較べれば、風呂の中で手をひとかきすれば良いだけなんて、まさに青少年のためのもっと安全な擬似おっぱいだな!」
A : 「あぁ、それも全てナヴィエとストークスのおかげだ。」
B : 「それはもういいっ言ってるだろ。」
A : 「ところで、ふと考えてみたことがあるんだ。さっき、指を太くすれば遅い速度でもレイノルズ数が大きくなるって言っただろ。東大寺の大仏なんかかなり指が太いじゃないか。」
B : 「確かに、そうだな。」
東大寺の大仏 (想像図)

A : 「今調べてみると、大仏の掌の長さは256cmだ。つまり普通の人間の10倍くらいある。だったら、指の太さも10倍はあるだろう。ってことは、ほんのそよ風が吹いただけでも、大仏の手にはしっかりとしたおっぱいの感触が感じられているんじゃないのかな?」

B : 「単に手が大きいから空気の抵抗も大きいだけどいう気がしないでもないが、指の長さもでかいしさぞかし超巨乳の感触かもしれんな!そう考えると、あの大仏の手も何か実にイヤラシイ手つきに見えてくるから不思議だな!」
A : 「う〜ん、悟りを開いているから、指先のヘンな感触なんかには惑わされないんだとは思うけどな。しかし、案外と仏もそんな煩悩と日夜闘っていたりするのかもしれないなぁ。しかも、その煩悩がホントーにあるのかもよくわからない幻のような擬似おっぱいってところが面白くないか?大仏の指先は二十一世紀の煩悩そのものを暗示しているのかもしれん。仏の手にも煩悩ってところだな!」
B : 「言いたい放題だな、全く。」


 さて、今回は「オッパイ星人の力学第四回 - バスト曲線方程式 編- (2001.01.13)」と繋がるところまで話が辿り着かなかった。おっぱいの表面張力、マボロシのような指先の流体力学、そして大仏の煩悩をめぐる大河ドラマは人生そのもののようにまだまだ続くのである。
 

2001-10-19[n年前へ]

女性を美しく見せる画像加工ソフト 

 色変換と座標変換くらいで、シワとりフィルターは実装されていないようですね。 from ASCII24(リンク

2003-11-13[n年前へ]

シャープ、小型液晶に適したリアルタイムフォント生成技術 

 文字を形成する点を座標データに置き換え、一部の点を間引いた上で線を構成し、間引いた点を再配置する独自の技術により、文字サイズを変更しても自然な表現を行なう、というLCフォント生成技術

2004-01-20[n年前へ]

「地図にない場所」 

 「男の隠れ家」という雑誌に少しハマっていたのは何年も前。その頃は、山奥や海が見える山中にある「男の隠れ家」を扱う雑誌がずいぶんと多かった。今では、そんな雑誌の扱う話もずいぶんと小さくなって、「男の小さな玩具」程度の雑誌が増えてしまった。それも、現実の経済事情を考えれば、まぁ仕方のない話だ。

1 山奥にある「男の隠れ家」ではないけれど、ガイドブックにも載っていない、地図にすら載っていないような隠し湯に憧れたりする気持ちを持つ人は多いと思う。つげ義春が歩くような辺鄙な温泉宿や、あるいは誰もいない山の中でぼぉっとしてみたいなんて思う人は多いハズだ。「地図にもない場所」だなんて、その響きだけで気になってしまう人だっていると思う。


 「はてなアンテナ」というサービスを知ったのは一年少し前だったろうか。『「おとなりアンテナ」という機能があって、不思議なくらい自分の好みに合ったサイトを教えてくれるんですよ』と、ある人に教えてもらったのだった。そして、実際に使ってみると、サイトの好みの類似度から「好みに-近い-サイト」を計算するその「おとなりアンテナ」はとても面白く感じた。だから、しばらくして「はてなダイアリ」が始まった時、ベータテスターに応募してみることにした。「はてなダイアリ」を使い始めると、日記内のリンク(キーワードリンク)の類似度から、その日記に「近い」と想定される「おとなり日記」を算出してみたりする機能が付いてみたりして、その「近い」「遠い」を算出する手法と趣向には感嘆したのである。そのサイトの間の「距離」にこだわるやり方をとても面白く好ましく思ったのだった。そして、その頃にはてなの作成者が研究室の後輩であることを知った。

 なるほど、測地学研究室という名前で、種々の測定手法で色々な箇所の位置を求め、種々の座標系の中にそれらの箇所を書き記したりするという研究室を選んだり、あるいはその中で時間をいくばくかの時間を費やしたのでであれば、「近い」「遠い」にこだわってみたり、「おとなりMap」を描いてみたりするのはとても自然に違いない。三角測量やGPS衛星を使って、色んな場所の位置や距離を求め、そしてそれぞれに適した座標系のもとで地図をつくる、という研究室にいたならば、「距離」を測って地図を描きたいと思うのが自然に違いない。GPS衛星ならぬネットワークロボットを使って、ネット上を測量し、色んな距離を測ってみたいと思うのだろう。そして、彼(彼ら)のあの伊能忠敬のような行動力であれば、これからも色んな地図を作り出して行くに違いない。

2 そんな、「色んな場所の地図を描きたい」という欲求は私にももちろんとても強くある。ひっそりと隠れている何かを誰の目に見えるようにしたい、という気持ちが強くある。そして、そんな欲求がある一方で、それと同時に「地図にはない場所」や「誰も知らない場所」に憧れる気持ちもやはりある。誰もいない「地図にない場所」に行ってみたいという気持ちも強い。色んな場所の地図を描いてしまえば、「地図にない場所」は減ってしまうだろうし、そこにはたくさんの人も訪れてしまうかもしれない。実際、私にはてなを教えてくれた人は、しばらく前にその人の「はてなダイアリ」を閉じてしまった。「ひっそりと隠れているつもりの日記」は消えてしまった。

 まぁ、よくある言い古されたジレンマの話なのだけれど、ふと「地図にない場所」を好きな人こそ「地図を作ろう」としてしまうんじゃなかろうか、と思ったのである。そして、「地図にない場所」をなくしてしまったりするんじゃなかろうか、とふと思ったりしたのだった。



■Powered by yagm.net