1999-11-20[n年前へ]
■バナー画像のエントロピー
がんばれ、JPEG
前回、
で「バナー画像中の文字数とファイルサイズ」に注目し、「文字情報密度」というものについて考えてみた。情報密度を考えるのならば、で考えたエントロピーについても計算してみなければならないだろう。そこで、今回は前回登場したバナー画像達のエントロピーを計算してみることにした。それにより、情報圧縮度について考えてみることにするのだ。
そうそう、今回も「本ページは(変な解説付きの)リンクページであります」ということにしておく。他WEBのバナー画像を沢山貼っているが、それはこのページが「リンクページ」であるからだ。
エントロピーを計算し、画像の圧縮度を調べる際に、今回はファイル先頭の400Byteにのみ注目した。ファイル全体で計算するのは面倒だったからである。各バナー画像でファイルサイズが異なるからだ。そこで、全て先頭400Byteに揃えてみた。
行う作業は以下のようになる。
まずは、画像ファイルの「先頭400Byteの可視化画像」を作成する。これは、各ファイル中の各Byteが8bitグレイ画像であると考えて、可視化したものである。以前書いたように、「てんでばらばらに見えるものは冗長性が低く、逆に同じ色が続くようなものは冗長性が高い」のである。もし、同じ色が続くとしたならば、「また、この色かい。どうせ、次もこの色なんだろ。」となってしまう。次の色の想像がつく、ということはすなわち、情報としては新鮮みのないものとなる。つまり、情報量が少ないのである。その逆に、情報量の多いものは、てんでばらばらで次の色(データ)の予想がつきづらいもの、となるわけである。まずは、そのてんでばらばら具合を「先頭400Byteの可視化画像」で確認する。
次に、てんでばらばら具合をヒストグラムで確認する。各Byteが0から255のどの値をとることが多いかを調べるのである。てんでばらばらであれば、どの値をとる確率もほぼ同じであり、フラットなヒストグラムになるはずである。逆に、ヒストグラム上である値に偏っていれば、値の予想がつきやすく、情報量が少ないということになるわけだ。
最後に、各Byteのデータを「8元無記憶情報源モデル」に基づいて計算したエントロピーを計算した。各Byteのエントロピー、すなわち、平均情報量は最大で8となる。当たり前である。1Byteは8bitであるから、最大限有効に使いきれば、情報量は8bitになる。
それでは、青い「hirax.net できるかな?」バナーを例にして見てみる。
文字情報密度 | ファイルサイズ(Bytes) | 画像 | 先頭800Byteの可視化画像 | ヒストグラム | エントロピー(bits/Byte) |
35 | 662 | 7.1 |
この画像ファイルはトータルで662Bytesであるが、その先頭400Bytesの可視化画像はけっこうばらばらである。それは、ヒストグラムをみても確認できる。少し、0近傍が突出しているが、それを除けば、かなり均等である。そして、エントロピー、すなわち、1Byte当たりの情報量は7.1bitである。満点で8bitであるから、7.1bitはなかなかのモノだろう。
それでは、前回登場したバナー画像達に、同じ作業をかけてみる。
文字情報密度 | ファイルサイズ(Bytes) | 画像 | 先頭400Byteの可視化画像 | ヒストグラム | エントロピー(bits/Byte) |
31 | 874 | 6.7 | |||
34 | 648 | 7.2 | |||
35 | 662 | 7.1 | |||
40 | 763 | 7.1 | |||
44 | 1003 | 7.1 | |||
54 | 750 | 7.1 | |||
58 | 864 | 6.6 | |||
112 | 2472 | 3.8 | |||
124 | 2348 | 7.0 | |||
155 | 465 | 7.3 | |||
223 | 3116 | 7.0 | |||
294 | 881 | 6.6 |
IntenetExplorer、RealPlayerといった、ヒストグラム上で突出している値がある画像はエントロピーが少ない。すなわち、平均情報量が少ない。大体、6bit台である。gooは0近傍の値が突出しているのが足を引っ張り、6.6bitとなっている。これらは、1Byteの8bit中の1bit強が無駄となっているわけである。
最高点はMacの7.3bitである。8bit中で7.3bitの情報量を持っているのである。逆に言えば、0.7bitは無駄ということになる。しかし、8bit中7.3bit使い切っているのはなかなかのものである。
それ以外は大体7bit台で拮抗している。しかし、それはいずれもGIF画像である。そう、唯一のJPEG画像である「今日の必ずトクする一言」が3.8bitと低い情報量であるのだ。しかし、これには、いろいろな理由があると思われる。例えば、ファイル全体ではなく先頭のみを見ているため、JPEGのヘッダー部分が入ってしまい、冗長性が高くなってしまっている、とかである。全体でなく、部分で評価しているのは非常にマズイだろう。また、GIFが情報圧縮していることもあるだろう。そのため、JPEG陣営にはかなり不利であったと思われる。
そうそう、今回は情報圧縮度にだけ注目したから、JPEGに不利な結果になった。けれど、他のいろいろな理由を挙げれば、GIFは使いたくないという気持ちもあるのだけれどね。けど、便利なんだよね。
2000-01-30[n年前へ]
■ソフマップでお買い物
磁界の可視化とバーコード
前回、
で「マグネビュアー」を使って磁界の可視化をして遊んでみた。今回はその続きである。ソフマップの磁気カードの中に書き込まれている磁気データを可視化して調べてみるのである。磁気カードには、
- 銀行のキャッシュカード
- クレジットカード
- テレホンカード
- オレンジカード
まずは、ソフマップカードの写真を示してみよう。これがソフマップで買い物をするたびにお世話になるソフマップカードである。
この写真からではどこにデータが書き込まれているのかわからない。そこで、「マグネビュアー」の登場と言いたいところであるが、残念ながら今回は「マグネビュアー」は登場しないのである。「マグネビュアー」はとても便利なのであるが、さすがに磁気カードの磁気データを読もうとすると分解能が不足する恐れがある。
そこで、代打選手に登場願うことにした。代打選手はキヤノン製のLBPのトナーである。以前、
の時に「トナーはクーロン力で制御されて画像を作るのだ」という話があった。キヤノン製の白黒のLBPではクーロン力に加えて磁気力を使ってトナーを制御している。なので、キヤノン製の白黒トナーは磁性体粉末ということになる。テレホンカードが出た頃はキヤノン製のトナーを使ってデータを読み出していた人も多いはずである。みな、テレホンカードの表面を削りトナーを振り掛けていたのである。というのは、聞いた話であり、実体験に基づくものでは絶対にない。神に誓っても良い。その頃にキヤノン製のトナーを使い倒していたということは絶対にないのである。しかも、その数年後に(以下略)。
それでは、磁性体の微少粉末であるトナーをソフマップカードに振り掛けてみよう。
ソフマップカードの磁気データが可視化されたのがわかると思う。磁気によるバーコードが見えるだろう。これがソフマップカードに書き込まれている磁気データである。
とはいえ、トナーの付着具合にムラがある。それは私が雑に実験を行ったからである。こんなにムラがあっても磁気コードが判別できるかどうか疑問を持たれる方も多いと思う。しかし、
- 読む方向に対して垂直な線が多い
- 読む方向に対して水平な線は少ない
そのようにして、ノイズを減らし、S/N比を上げた画像を示してみる。
どうだろうか、驚くほど綺麗になっているのがわかると思う。まさか、と思われるかもしれないが本当である。
さて、これはソフマップカードの磁気データの全体像であるが、もう少し拡大したものを以下に示す。
極めて明瞭に磁気データが可視化されているのがわかると思う。これはトナーを振りかけて、1万円ちょっとのスキャナ(CanonのUSB接続の安物スキャナ)で読み込んだものに対して先の処理をしただけである。これほど明瞭になるのも、全て1次元バーコードの特徴のおかげである。磁気ヘッドの制作などをしなくても良いのである。
磁気カードの記録密度は銀行統一仕様(NTT)でもISO3554でも8.3bit/mm=211bit/inchであるから、最近の600dpi(dot/inch)程度のスキャナーであれば十分磁気データの画像読みとりが可能である。
それでは、もっと拡大してみる。拡大する部分は上の画像の右の辺りである。すると、このようになる。
データ間隔がわかりやすいように、ここでは矢印や文字を書き入れている。この画像を見ると、磁気データは規則的な細かい周期性を持ち、その周期でいうと8つ単位でさらなる周期性があるように思われる。つまり、8bitをひとまとまりとしたデータが書き込まれているように見える。例えば、上の画像では
- ( 白、白、白、白、白、白、黒、黒 ) x 2
- ( 00000011 ) x 2
- ( ああああああたた ) x 2
複数枚のカードのこの部分を比較してみれば、比較的容易にデータ構造は解析することができるだろう。また、一枚のカードからでもカード番号などの数字と磁気データを比較することにより、解析することはやはり困難無しに解析できると思うのである。と、思うわけではあるが、あまりやりすぎるのはマズイと思われるので、今回はこれまでにしておく。
2000-03-09[n年前へ]
■飲み屋の音と1/fノイズ
くつろぎの音響解析編
私は典型的なプロレタリアート(死語)である。そのせいか、高級(行ったことがないからわからないのだが)そうなバーは苦手である。しかし、安〜い居酒屋は大好きだ。むしろ、「愛している」と言っても良いくらいである。新宿西口の思い出横町なんかその最たるものだ。
ところで、飲み屋の喧噪の音を聞いていると、何故か心安らぐような気さえしてしまう。「飲み屋の喧噪の音」というのはノイズとしか言いようのない音であるが、そのノイズが何故か心安らぐのである。しかし、高級そうなバーでは心安らぐどころではないのである。
一体、この違いはどこにあるのだろうか?いや、もちろん私がビンボーであるせいと言ってしまえば、話は簡単である。しかし、それはあまりにも哀しすぎる(私にとって)。きっと、何か他の理由があるに違いない、と思うのである。そこで、「科学の力」で何か他の理由を探してみることにした。私がバーが苦手で、居酒屋が大好きな理由を探してみることにしたのである。
居酒屋の環境ノイズを聞いていると、私は何故か心が安らぐわけであるが、「心安らぐノイズ」と言えば、「/fノイズ」というものがある。1/fノイズは心地良さ・気持ちよさを感じる、とよく言われる。今回はこれに着目してみたい。私が居酒屋の音を聴くと心が安らぎ、バーの音を聴くと何故か緊張する理由が「お金」ではなくて、環境音の特性にあると考えてみるのである。私のプライドのためにもそうであって欲しいわけだ。
そこで、今回は典型的な飲み屋の環境音を音響解析をしてみたいと思う。そして、それが果たして1/fノイズになっているかどうか調べてみたいと思うのである。特に、同じ飲み屋でも居酒屋とバーの間に違いがあるかどうか調べてみるのである。
それでは、飲み屋の代表的なものとして
- 居酒屋
- バー
- キャバレー
- 効果音大全集 45 屋内ノイズII キングレコード
- WaveSpectra for Windows95/98/NT4( http://member.nifty.ne.jp/efu/ )
これを見てみると、居酒屋とキャバレーはほぼ同じであり、300Hzより高い音に関しては周波数=fが高くなるに従い環境音のパワー密度が低下していることがわかる。しかもその低下の仕方は滑らかである。ここで、表示軸は共に対数軸であるので、居酒屋とキャバレーの環境音は1/fノイズに近いといっても良いだろう。
私が居酒屋の環境音を聞くと落ち着くのはこれが理由だったのである。安いから落ち着くのではなくて、環境音が1/fノイズであるから落ち着くのである。私がビンボーなせいではなくて、ちゃんとした科学的な理由があったのである。
それに対して、一番下のバーの環境音では少し様子が異なる。パワースペクトラムは滑らかでもないし、傾きも異なる。すでに、環境音は1/fノイズではなくなっている。これである。このせいで、私はバーでは落ち着かなかったのだ。そう、私がバーで落ち着かないのは私がビンボーなせいではなくて、バーの環境音が1/fノイズでないせいだったのである。
この三つの環境音の間の違いが判り易いように、この三つを重ねて表示してみる。表示色は
- 緑:居酒屋
- 青:キャバレー
- 紫:バー
緑の居酒屋と青のキャバレーがほぼ同じパワースペクトラムであるのがわかると思う。それに対して、バーでは様子が異なり、明らかに環境音が1/fノイズではなくなっている。ずいぶんと不自然なパワースペクトラムであることが判ると思う。
この不自然さが故に私はバーの環境音を聴いていると、落ち着かないのである。そういうわけで、今回の結論は、
- 私は居酒屋の音を聞いていると心が安らぐが、バーの音を聴いていると緊張する
- その理由は私がビンボーなせいではなく、居酒屋とバーの環境音の違いによるものである
- その違いは居酒屋の環境音が1/fノイズであるのに対して、バーの環境音は1/fノイズではない
あれっ、そう言えば、キャバレーの環境音も1/fノイズってことは、私はキャバレーの環境音を聞いても心が安らぐのだろうか?うーん、行ったことがないからわからないや。
2000-06-29[n年前へ]
■オッパイ星人の力学
胸のヤング率編
本WEBサイトは「技術系サイト」というジャンルに分類されることが多い。が、実際にはどうも変な話題も多いように思う。しかし、私の観察によれば技術系サイトと呼ばれるところには必ずこの手の話が転がっているのである。実際、究極の技術系サイトの「Fast&First」でもというような素晴らしい話題はいっぱいあるし、同様に至高の技術系サイトである「今日の必ずトクする一言」の中でもという絶品の作品達が飾られている。
いや、つまり何が言いたいのかというと、変な話を書いてしまったことを正当化したいのである。技術系サイトには「とても身近なナゾ」への探求話が欠かせないのだから、変な話を書いたけど、勘弁しておいて欲しい、と言いたいのである。間違ってもエロサイトには分類して欲しくないのである。さて、どんな話かは下を読んで頂くことにして、もう少し言い訳を続けたい。何と言うか、この話を書き終えて何故か言い訳なしにはWEBに出せないような気持ちに、私はなっているのである。いっそのこと、この話は封印しようかとも考えた。しかし、先に示したように究極・至高の技術系サイトにもこういった?類の話があることに勇気付けられ、せっかくなので公にしてみることにした次第である。
以前、
で「できるかな?」読者の好みを調べてみた。それがこの下の円グラフである。この円グラフから引っ張った部分は「エロ」である。これは、「IO = アイオー」ではない。「エロ= えろ=すけべぇ」である(前にも書いたけど)。 かように、「エロ」に興味を持つ人は多い。例を挙げるならば、「オッパイ星人」という言葉があるくらい、男の中には女性の胸に興味を持つ人が多い。私の友人の中には、ことあるごとに「おぉっ!!」と言いながら、通り過ぎる女性の胸を眺めるような輩までいるのである。しかもメガネをポケットからすばやく取り出し、サッとメガネをかけながら眺めるのである。まるで、ウルトラマンのセブンに変身する瞬間のモロボシダンなのである。「ウルトラセブンか、オマエは!」とか「モロボシダンがオッパイ星人に変身してどないすんねん!」と突っ込みたくなるほどである。
とりあえずこういう「オッパイ星人」のために、今回は「オッパイ星人の力学」について考えてみたい。具体的には、「バスト(なんか気恥ずかしいので言葉を変えた)の力学」について考えてみることにした次第である。
それでは、バストの力学について考え始めることにしよう。今回は、まずバストの基礎特性を調べ、次回にその運動力学について考えてみる予定である。
最初に、基本的な知識からだ。TVを観ていると、よく「Fカップアイドル」というような言葉を聞く。その言葉はよく耳にするのだが、実際のところその意味は知らなかった。そこで、調べてみると、ブラジャーのカップサイズは次の表のようにして決まるという。
カップ | AAA | AA | A | B | C | D | E | F | G | H | I | J | K |
アンダーバストと トップバストとの差 | 5.0 | 7.5 | 10 | 12.5 | 15 | 17.5 | 20 | 22.5 | 25 | 27.5 | 30 | 32.5 | 35 |
胸のバスト直下の部分の胸囲 = 「アンダーバスト」と、バスト部分の胸囲= 「トップバスト」の差からブラジャーのカップサイズが決まるわけだ(って今知っただけの知ったかぶりだけど)。Kカップなんてのもあるなんて驚きである。いやぁ、知らなかった。
しかし、「アンダーバストとトップバストとの差」が判っただけではバストの力学について考えるのは難しい。もう少し、取り扱いやすい量に変形させたい。そこで、次のような図を考えてみた。これは「胸部の断面図」である。上方向が人の前面方向である。
バストを「半球状の物体」と仮定して、その「半球の半径 = r」を計算したいのである。そうすることで、バストの形状を計算しやすくなるのである。現実問題としては、バストがそうそう「半球状の物体」になるわけはないだろう。しかし、今回はとりあえず理想のドーム形状のバストを計算してみる、ということで許してもらいたい。
さて、上の極めて大雑把な近似をしまくりの図を見て頂くと判るように、
アンダーバスト = 4r + 4r + 2 胸のベース部分の厚さであり、
トップバスト = 2 r + 2 π r/2 + 4r +2 胸のベース部分の厚さである。したがって、
「アンダーバストとトップバストとの差」 = ( 2 r+2π r/2+4r+2胸のベース部分の厚さ)と計算してやることができる。そのようにして、計算した「胸のカップ数とr(cm)」を示したものが下の表である。ただし、実際には胸囲はそもそも下へ行くほど小さくなっているだろうから、アンダーバストはトップバストよりも胸のベース部分が35%小さいとして計算してみた。
- ( 4r+4 +2胸のベース部分の厚さ )
=2 r+2πr/2-4r
カップ | AAA | AA | A | B | C | D | E | F | G | H | I | J | K |
r | 2.8 | 4.3 | 5.7 | 7.1 | 8.5 | 10 | 11 | 13 | 14 | 16 | 17 | 19 | 20 |
これをグラフにしたものを下に示す。ほぼ直線的にバストのサイズが増加しているのが判ると思う。
例えば、AAAカップだと半径2.8cmの半球状の物体だ。まるで、スーパーボールである。これなら、ブラジャーはいらないだろう。それが、Kカップともなると半径20cm程になる。ちょうどメロンを半分に切った感じだろうか?これはかなり、デカイ。
このr(cm)さえ計算できれば、あとは物体形状も体積もわかる。体積が判れば、当然のごとく重さも計算することができる。というわけで、次は重さについて考えてみよう。何しろ、バスとの運動力学を考えるならば、どの程度の質量を持つかどうか考えることは避けて通れないのである。
バストのほとんどの部分を占めるのはきっと脂肪だろう。脂肪の密度は水とほぼ同じだろう。そこで、脂肪の比重が1g/cm^3であるとして計算してやると、「胸のカップ数と胸一個あたりの重さ(g)」は以下のように計算することができる。(実はこの計算には後の松坂季美子の胸の重さに合わせるための定数、季美子定数を乗してある。)
カップ | AAA | AA | A | B | C | D | E | F | G | H | I | J | K |
胸一個あたりの重さ(g) | 8.9 | 30 | 71 | 140 | 240 | 382 | 570 | 810 | 1100 | 1500 | 1900 | 2500 | 3100 |
なんと、Kカップでは「胸のカップ数と胸一個あたりの重さ(g)」が3000g= 3kg程もあるのだ。新生児が二人胸にぶら下がっているのである。この数字がホントなら大変な話だ。肩に負担がかかりんまくりである。1.5リットルのペットボトルを4本も胸にぶら下げているのだから、これは大変だ。なるほど、ブラジャーは必需品である。
上の表をグラフにしたものが下である。
バストの質量は体積に比例する、すなわち、バストのサイズ( =長さ )の二乗に比例する。そこで、このような形状のグラフになるわけである。このグラフを眺めていると、Dカップ辺りを境にして、それより大きくなると胸や肩にかかる負担がシャレにならないくらいの大きさになると推測される。
ところで、地表にいる限り、当然バストも重力の影響を受ける。いや、むろん地表でなくても重力の影響は及ぼされるわけだが、そういう話は今回はおいておく。とりあえず、六本木を歩いている彼女も、ロサンゼルスにいる彼女も重力の影響を受けるのである。重力を受ければ、当然バストは重力で引っ張れる方向に垂れ下がってしまう。その様子を示したのが、次の図である。ここでは、「胴体から垂れ下がるバスト」を単純に「重りとバネで表すことができるモデル」だとしてみた。
さて、一般的にバネの特性はフックの法則により
ここまで来れば、あともう一歩である。この式のkすなわち「バストに関するヤング率」を調べるだけである。「バストの垂れ具合」と「バストの重さ」を同時に計ってやれば良いのである。そうすれば、残るただ一つの変数、「バストに関するヤング率」を計算することができる。いやぁ、簡単、簡単....
といっても、実際のところここが一番苦労した。「バストの垂れ具合」と「バストの重さ」を同時に計らせてくれる人なんかどこにもいないのである。当たり前である。
そこで、ネットで検索をかけまくること数時間、ついに私は見つけたのだ。
そして、その質量 一個1kg!」
科学の徒として、私が丁寧に観察した結果、松坂季美子の「バストの垂れ具合」は約10cmであることがわかった。いや、もちろん科学の探究心のためであって、それ以外の気持ちはなかったことをここに誓っておこう。
その苦労の結晶のデータが、
- 松坂季美子はGカップ、バストの重さ=1kg、バストの垂れ具合10cm
この境界条件さえあれば、「バストに関するフックの法則」を完全に解くことができて、「バストに関するヤング率」も導き出すことができるのだ。ちょちょいのちょい、である。
その「バストに関するヤング率」を用いて計算してみた「胸のカップ数とバストの垂れ具合(cm)」を次に示してみる。
バストの「カップ」サイズの三乗に比例して、「バストが垂れていく様子」がよくわかると思う。この物理形状は「カップ」サイズに比例して、「バストの垂れ具合」は「カップ」サイズの三乗に比例するというデータを用いることにより、「究極のバストサイズ」を導き出せるのではないか、と私は考えているのである。が、それはまたいつかの話題と言うことにして、話を続けたい。
ところで、「バストに関するヤング率」は常に一定ではない。「おばあちゃんの垂乳根」を想像して頂けばわかるように、年をとれば「バストの垂れ具合」は大きくなるのである。
というわけで、さっきの計算結果をもっと若い条件、すなわちもっとヤングなヤング率で計算してみたのが次のグラフである。
赤のもっとヤングなヤング率で計算してみた場合には、バストには張りがあって、バストの垂れ具合は小さいことがわかると思う。
さて、今回はバストの基礎特性を調べてみた。次回、この「バストに関するフックの法則」を用いて、「オッパイ星人の動力学」について考えてみたい、と思う。
追伸 : この話を書き上げた後に、恐る恐る回りの人に感想を聞いてみた。すると、
と言われてしまいました。ハイ、申し訳ありません。その通りでございます。返す言葉もありません。「こんなの作るくらいなら、
男の人のヤング率でも計算しなさいよ。」
2001-01-27[n年前へ]
■オッパイ星人の力学 仏の手にも煩悩編
時速60kmの風はおっぱいと同じ感触か?
本サイトhirax.netは「実験サイト」というジャンルに分類されることが多いようである。何が実験で、何が実験でないのかは私にはよくわからないのだが、とにかく「実験サイト」と呼ばれるサイトは数多くある。そして、その数ある実験サイトの中でも、人間そして愛について日夜取り組んでいるサイトの一つが「性と愛研究所」である。その「性と愛研究所」を読んでいると興味深いことが書いてあった。テレビ番組の「めちゃめちゃイケてる!」の中で何でも「時速60キロの風圧はおっぱいの感触である」と言っていたらしい。そしてまた、「性と愛研究所」では「おっぱいの感触と風圧に関する考察」の中で、「時速60kmでは全然おっぱいの感触ではなくて、ちょうど時速100kmを境に急におっぱいの感触を感じます。」というメールを紹介しながら、
「時速100kmの風では、本物は触れないけどお手軽に疑似体験、名付けて『プリンに醤油でウニ』ではなくなってしまう。それでは、まるで『キャビアにフォアグラでトリュフの味』だ。青少年のために疑似おっぱいを探してあげる必要があるな。」と結論づけている。
この「時速60kmの風」現象は「できるかな?」的にとても興味深いと思われるので、今回じっくりと考えてみることにしてみた。そして、この結論に何らかのプラスαをしてみたいと思う。
そう、前回「オッパイ星人の力学 第四回- バスト曲線方程式 編- (2001.01.13)」でオッパイの表面で働いている力について考えてみたのは、実は単に今回・そしてさらに次回の話のための準備だったのである。(さて、ちなみに今回は会話文体をメインに話が進む。「性と愛研究所」ではないが、この手の話は会話文体の方が書きやすいように思うし、私のバイブル「物理の散歩道」でも「困ったときの会話文体」と言われていたので挑戦してみた次第である。言うまでもないが、AもBも私が書いてはいるが、私自身ではない。)
A : 「東名高速で出勤途中に確認してみたんだが、やはり時速100kmあたりが妥当な感じだったな。」
B : 「何を根拠に妥当なのかがよくわからないが、確かに時速60kmでは手に何かが触っているという感触すらないな。それにしても、哀しい出勤の景色だぞ、それ。」A : 「ほっとけ!だけど、少し考えてみると、このおっぱい(ニセモノ)の感触問題は結構面白く、技術的にもなかなかに深い話だと思うんだよ。」
B : 「はぁそうですか…、としか言いようがないな。」A : 「まぁ、聞け。何しろこのおっぱい(ニセモノ)の感触問題には流体力学のエッセンスがぎっしりと詰まっているんだからな。」
B : 「そんな話は聞いたことはないが、とりあえず聞かせてもらおうか。」A : 「このおっぱい(ニセモノ)の感触問題を解くためには、とりあえず車の窓から手を出したときの指の周りの空気流を計算すれば良いわけだ。」
B : 「ちょっと待て。何で指の周りなんだ。手のひらじゃなくて?」A : 「簡単なことさ。試しにおっぱいを揉む仕草をしてみろよ。」
B : 「こ、こうか?あぁっ?手のひらじゃなくて指で揉んでるっ!」A : 「そうだろ。何故かわからないが、おっぱいを揉む仕草=Mr.マリックが超魔術をかける時のような指使いらしいんだよ。」
B : 「うむ、確かにそのようだな。」A : 「だから、時速60kmの風からおっぱいの感触を受けているのは指先だと考えるのが自然だろ。それなら、とりあえず下の図のような「指の間を抜けていく空気の流れ」を計算してみれば、おっぱい(ニセモノ)の感触問題が解けるわけだ。」
B : 「実写の手に二次元の計算結果を三次元的に合成するという凝った処理が、実にクダラナイことに使われている例だな…」
高速で走る車の窓から手を出して、その手の指の間を抜けていく空気の流れを計算しよう。 鉛直方向の指の等方性を考えて、右の図に示すような指を輪切りにするような水平面のみを考える。 こんな写真を撮るときに、自己嫌悪に陥りがちなのは何故だか知りたい今日この頃。 |
A : 「こういう「空気の流れ」ような流体の力学は、ニュートンのプリンキピアに始まり、オイラーとベルヌーイにより非圧縮・非粘性の理想流体の運動方程式とエネルギー保存則が導かれた。それがオイラーの運動方程式とベルヌーイの式だ。オイラーの運動方程式はちなみにこんな感じだ。」
加速度 = 外力 + 圧力勾配力 v : 速度 |
A : 「基本的には「加速度 = 外力 + 圧力勾配力」という形だな。この非圧縮・非粘性の理想流体の場合はラプラシアンがゼロのポテンシャル流れと呼ばれる単純な流れになる。試しに、そんな場合をNast2Dを元にしたプログラムで計算してみた結果はこんな感じになる。ホントはこの計算自体は完全な理想流体ではないのだが、まぁ大体はこんな感じだ。」
B : 「おっ、あっという間に計算したな。」A : 「まぁ、ポテンシャル流れならエクセルでもちょちょいと計算できるくらいだからな。ちなみに、これは窓から手を出してしばらくしてからの空気の流れだ。」
A : 「で、どうだ?」
B : 「いや、どうだ、と言われても困るが、なんかキレイだな。だけどちょっと小さくて見にくいなぁ。」A : 「そう言われれば確かにそうだ。じゃぁ拡大してみるか。」
B : 「で、この結果から何がわかるんだ?」A : 「この図で空気は左から右へ流れているわけだが、左端の空気の速度と右端の空気の速度は、実は同じなんだ。」
B : 「そう言われても、よくわからないが?」A : 「指を通り過ぎてく空気は、指をとおる前後で運動量がそのまま変わってないってことさ。つまり、空気は指を通り過ぎる時になんら抵抗を受けてないってことだ。」
B : 「えっ?おかしいじゃないか、それなら逆に言えば指も空気から何の抵抗を受けないってことか?」A : 「そういうことだ。これがダランベールのパラドックスだ。」
B : 「じゃぁ、何か?この指先に感じるまぎれもないおっぱいの感触は幻だとでもいうのか!? そんなのオレは認めないぞ!」A : 「まぎれもない、っていうほどのものでもないし、ニセモノおっぱい自体は何か一種の幻のような気もするが、もちろん感触自体は幻であるハズはない。そもそも、空気をサラサラな理想流体として取り扱ったところが間違っているわけだ。そこで、登場するのがナヴィエとストークスだ。彼らはオイラーの運動方程式に粘性を導入した。全てはおっぱいの感触を説明するために、だ。」
B : 「それウソだろ。ナヴィエとストークスが聞いたら怒るぞ。」
加速度 = 外力 + 圧力勾配力 + 粘性力 v : 速度 |
A : 「見ればすぐわかるだろうが、この非圧縮流体に対するナヴィエ・ストークスの方程式は、最後に粘性項が入っている以外はオイラーの運動方程式と全く同じだ。」
B : 「なるほど。こうしてみると意外に簡単な式だな。」A : 「あぁ、オイラーの運動方程式に粘性項が入っただけだからな。そのせいで計算はちょっと複雑になるが、最近のパソコンならノープロブレムだ。というわけで、粘性を考慮して計算してみた結果が次の図だ。」
B : 「おっ、ちょっと様子が違うな。何か、ジェットエンジンみたいに尾を引いてるぞ。」A : 「そうだろ。指の後ろのl様子がずいぶんと違うだろう。で、これを拡大してみたのが次の図だ。」
B : 「左端の空気の速度はもちろんさっきと同じだが、指の後ろでは空気が渦巻いているし、右端の空気の速度は全然違うな。」A : 「もっとリアルに、窓の外に手を出したときの、指の周りの空気の動きを時間を追って計算してみた計算結果のアニメーションが次の図だ。指の周りに空気が渦巻いていく様子がよくわかるハズだ。」
窓の外に手を出したときの、指の周りの空気の動きを時間を追って計算してみたもの。指の周りに空気が渦巻いていく様子がよくわかる。 メッシュを細かく切ったおかげで、計算結果は1GB弱。なんてこったい。 |
B : 「指が空気の中を走り抜いていく様子がよくわかるな。確かにこれなら、空気の抵抗を受けまくりだな。」A : 「そうだ。空気は指から力を受けるし、逆に、指は空気からしっかりと力を受けるわけだ。」
B : 「なるほど、この計算結果は指先に感じるまぎれもないおっぱいの感触を説明しているわけだな。いい感じじゃないか。流体力学そして粘性項さまさまじゃないか!」A : 「あぁ、それも全てナヴィエとストークスのおかげだ。」
B : 「おやっ?ちょっと待てよ!これでは、ただ現実を説明してみただけで、何の解決にもなってないぞ!時速60kmと時速100kmの風の感触の差を説明しているわけでもないし、青少年のためのもっと安全な擬似おっぱいを提供しているわけでもない!」A : 「いや、それがそういうわけでもない。実はこの先があるんだ。このナヴィエ・ストークスの方程式の解はレイノルズ数という無次元数によって決定されるんだ。今回の場合で言うと、レイノルズ数は「指の直径x 車の速度 / 流体の運動粘性率」という形になる。そして、このレイノルズ数が大きくなるほど渦が延びていくんだ。」
B : 「なるほど、わかってきたぞ。つまりあれだな。時速60kmから時速100kmに速度を上げれば、それに応じてレイノルズ数が大きくなって、空気の渦もおおきくなるし、おっぱいの感触も確実なものになるわけだな。勉強になるな。」A : 「う〜ん、実際には密度の違いの方が大きいんだが、ナヴィエ・ストークスの方程式の理解としてはそれでいいかもな。あと、単にレイノルズ数を大きくしたかったら指を太くする、っていうのでもいいわけだ。」
B : 「そう言われても指の太さはなかなか変えられないしなぁ。」A : 「指サックとか色々手はあると思うが、もっといい方法がある。さっきの式を眺めてみれば流体の運動粘性率が小さくなれば、レイノルズ数は大きくなる。例えば、水の運動粘性率は空気のそれの十五分の一だ。」
B : 「ってことは、水の中だったら、レイノルズ数も大きいし、密度も大きいし、指先に抵抗を受けまくりってことだな。すると、水中で手を動かしてみれば、それは空気中の高速クルージングと同じってことになるな!」A : 「そうさ、風呂の中で手をひとかきすれば良いだけの話さ。何もわざわざ時速100kmの車の窓から手を出す必要はないんだ。実際、風呂の中で確かめてみたけど、なかなかイイ感じだ!」
B : 「時速100kmで走る車の窓から手を出すのに較べれば、風呂の中で手をひとかきすれば良いだけなんて、まさに青少年のためのもっと安全な擬似おっぱいだな!」A : 「あぁ、それも全てナヴィエとストークスのおかげだ。」
B : 「それはもういいっ言ってるだろ。」A : 「ところで、ふと考えてみたことがあるんだ。さっき、指を太くすれば遅い速度でもレイノルズ数が大きくなるって言っただろ。東大寺の大仏なんかかなり指が太いじゃないか。」
B : 「確かに、そうだな。」
A : 「今調べてみると、大仏の掌の長さは256cmだ。つまり普通の人間の10倍くらいある。だったら、指の太さも10倍はあるだろう。ってことは、ほんのそよ風が吹いただけでも、大仏の手にはしっかりとしたおっぱいの感触が感じられているんじゃないのかな?」
B : 「単に手が大きいから空気の抵抗も大きいだけどいう気がしないでもないが、指の長さもでかいしさぞかし超巨乳の感触かもしれんな!そう考えると、あの大仏の手も何か実にイヤラシイ手つきに見えてくるから不思議だな!」A : 「う〜ん、悟りを開いているから、指先のヘンな感触なんかには惑わされないんだとは思うけどな。しかし、案外と仏もそんな煩悩と日夜闘っていたりするのかもしれないなぁ。しかも、その煩悩がホントーにあるのかもよくわからない幻のような擬似おっぱいってところが面白くないか?大仏の指先は二十一世紀の煩悩そのものを暗示しているのかもしれん。仏の手にも煩悩ってところだな!」
B : 「言いたい放題だな、全く。」
さて、今回は「オッパイ星人の力学第四回 - バスト曲線方程式 編- (2001.01.13)」と繋がるところまで話が辿り着かなかった。おっぱいの表面張力、マボロシのような指先の流体力学、そして大仏の煩悩をめぐる大河ドラマは人生そのもののようにまだまだ続くのである。